This course was created with the
course builder. Create your online course today.
Start now
Create your course
with
Autoplay
Autocomplete
Previous Lesson
Complete and Continue
Machine Learning for Data Science using MATLAB
Introduction to course and MATLAB
Introduction to course (5:10)
Introduction to matlab (8:26)
--------------------------- Data Preprocessing ---------------------------
Code and Data
Section Introduction (1:54)
Importing the data into MATLAB (7:25)
Handling Missing Data (Part 1) (7:43)
Handling Missing Data (Part 2) (6:46)
Outliers (Part 1) (9:07)
Feature scaling (9:50)
Outliers (Part 2) (6:02)
Dealing with Categorical Data (Part 1) (9:50)
Dealing with Categorical Data (Part 2) (6:20)
Your Data Preproprocessing Timplate (3:58)
--------------------------- Classification ---------------------------
Code and Data
K-Nearest Neighbor
KNN Intuition (7:27)
KNN in matlab (Part 1) (10:13)
KNN in MATLAB (Part 2) (12:38)
Visualizing the Decision Boundaries of KNN (13:06)
Explaining the code of visualization (9:53)
Customization options (part 1) (7:19)
Here is our classification template (4:21)
Customization options (part 2) (10:32)
Naive Bayesain
Intuition of Naive Bayesain (Part 1) (11:24)
Intuition of Naive Bayesain (Part 2) (15:00)
Naive Bayesain in Matlab (6:06)
Customization Options of Naive Bayesain In MATLAB (4:18)
Decision Trees
Decision Trees Intuition (10:24)
Visualizing the decision tree using the view function (9:02)
Customization Options for Decision Trees (9:20)
Decision tree in matlab (4:48)
SVM
SVM Intuition (Part 1) (15:21)
Kernel SVM Intuition (6:45)
SVM in MATLAB (6:37)
Customization Options for SVM (9:30)
Discriminant Analysis
Discriminant Analysis Intuition (13:12)
Discriminant Analysis in MATLAB (4:01)
Customization Options for Discriminant Analysis (5:03)
Ensembles
Ensembles Intuition (14:15)
Ensembles in matlab (8:53)
Customization Options for Ensembles (13:02)
Evaluation
Confusion Matrix (15:51)
Validation_methods (12:04)
Validation methods (Part 1) (12:08)
Validation methods (Part2) (8:32)
Evaluation (8:22)
-------------------------- Clustering ---------------------------
Code and Data
K-Means
K-Means Clustering Intuition (12:04)
Choosing the number of clusters (14:19)
K-means clustering in MATLAB (Part 1) (12:55)
K-means clustering in MATLAB (Part 2) (16:27)
Hierarchical Clustering
Hierarchical Clustering Intuition (Part 1) (9:41)
Hierarchical Clustering Intuition (Part 2) (15:38)
HC in matlab (19:25)
-------------------------- Dimensionality Reduction ------------------
PCA Intuition (7:40)
PCA in MATLAB (Part 1) (13:41)
PCA in MATLAB (Part 2) (17:00)
Code and Data
Project: Malware Analysis
Project Discription (8:17)
Customizing code templates for completing Task 1 and 2 (Part 1) (9:40)
Customizing code templates for completing Task 1 and 2 (Part 2) (5:30)
Customizing code templates for completing Task 3, 4 and 5 (17:59)
Code and Data
Introduction to matlab
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock